Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Kumar, Amit; Ron-Zewi, Noga (Ed.)While much of network design focuses mostly on cost (number or weight of edges), node degrees have also played an important role. They have traditionally either appeared as an objective, to minimize the maximum degree (e.g., the Minimum Degree Spanning Tree problem), or as constraints that might be violated to give bicriteria approximations (e.g., the Minimum Cost Degree Bounded Spanning Tree problem). We extend the study of degrees in network design in two ways. First, we introduce and study a new variant of the Survivable Network Design Problem where in addition to the traditional objective of minimizing the cost of the chosen edges, we add a constraint that the 𝓁_p-norm of the node degree vector is bounded by an input parameter. This interpolates between the classical settings of maximum degree (the 𝓁_∞-norm) and the number of edges (the 𝓁₁-degree), and has natural applications in distributed systems and VLSI design. We give a constant bicriteria approximation in both measures using convex programming. Second, we provide a polylogarithmic bicriteria approximation for the Degree Bounded Group Steiner problem on bounded treewidth graphs, solving an open problem from [Guy Kortsarz and Zeev Nutov, 2022] and [X. Guo et al., 2022].more » « less
- 
            One of the most important and well-studied settings for network design is edge-connectivity requirements. This encompasses uniform demands such as the Minimum k-Edge-Connected Spanning Subgraph problem (k-ECSS), as well as nonuniform demands such as the Survivable Network Design problem. A weakness of these formulations, though, is that we are not able to ask for fault-tolerance larger than the connectivity. Taking inspiration from recent definitions and progress in graph spanners, we introduce and study new variants of these problems under a notion of relative fault-tolerance. Informally, we require not that two nodes are connected if there are a bounded number of faults (as in the classical setting), but that two nodes are connected if there are a bounded number of faults and the two nodes are connected in the underlying graph post-faults. That is, the subgraph we build must "behave" identically to the underlying graph with respect to connectivity after bounded faults. We define and introduce these problems, and provide the first approximation algorithms: a (1+4/k)-approximation for the unweighted relative version of k-ECSS, a 2-approximation for the weighted relative version of k-ECSS, and a 27/4-approximation for the special case of Relative Survivable Network Design with only a single demand with a connectivity requirement of 3. To obtain these results, we introduce a number of technical ideas that may of independent interest. First, we give a generalization of Jain’s iterative rounding analysis that works even when the cut-requirement function is not weakly supermodular, but instead satisfies a weaker definition we introduce and term local weak supermodularity. Second, we prove a structure theorem and design an approximation algorithm utilizing a new decomposition based on important separators, which are structures commonly used in fixed-parameter algorithms that have not commonly been used in approximation algorithms.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available